Conditioned locomotion in rats following amphetamine infusion into the nucleus accumbens: blockade by coincident inhibition of protein kinase A.
نویسندگان
چکیده
Recent studies demonstrate a role for cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in the nucleus accumbens (NAc) in reward-related learning. To clarify this role, we assessed the effect of PKA inhibition on the unconditioned and conditioned locomotor activating properties of intra-NAc amphetamine. Rats underwent three 60 min conditioning sessions, pairing a test environment with bilateral co-infusions of amphetamine (25 microg/side) and the PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS) (0, 2.5, 250, 500 ng, 1, 10 or 20 microg/side). Two additional groups - receiving amphetamine explicitly unpaired with the environment or saline/environment pairings - served as controls. In a subsequent drug-free 60 min session, animals that received amphetamine/environment pairings demonstrated conditioned locomotion relative to controls. Rp-cAMPS co-treatment during pairing sessions differentially affected conditioned and unconditioned locomotor activation. Amphetamine-induced unconditioned activity was significantly enhanced by 500 ng and 1 microg Rp-cAMPS, locomotor sensitization was enhanced by 250 ng-1 microg Rp-cAMPS, and conditioned activity was attenuated by 1 microg Rp-cAMPS and blocked by 10 and 20 microg Rp-cAMPS. Thus, unconditioned activity and locomotor sensitization were enhanced at doses (250 ng-1 microg) that did not affect or attenuated conditioned activity, while conditioned activity was reduced or blocked at doses (1-20 microg) that enhanced or did not affect overall unconditioned activity. These results demonstrate that the activation of PKA plays a critical role in the process by which properties of drugs become associated with environmental stimuli.
منابع مشابه
Differential effects of calcineurin inhibition and protein kinase A activation on nucleus accumbens amphetamine-produced conditioned place preference in rats.
The nucleus accumbens (NAc) plays a critical role in amphetamine-produced conditioned place preference (CPP). In previous studies inhibition or activation of cyclic adenosine monophosphate-dependent protein kinase (PKA) blocked NAc amphetamine-produced CPP. PKA activation unrelated to ongoing DA transmission may disrupt reward-related learning. Calcineurin (CN) down-regulates downstream PKA tar...
متن کاملInhibition of morphine tolerance within the rat nucleus accumbens by nitric oxide
The role of glutamate receptors within the nucleus accumbens in morphine tolerance has been postulated. Previous studies have reported that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effect of intra-accumbal injections of L-arginine, the NO precursor and L-NAME, the NOS inhibitor on the morphine tolerance in Wistar rats (2...
متن کاملInhibition of morphine tolerance within the rat nucleus accumbens by nitric oxide
The role of glutamate receptors within the nucleus accumbens in morphine tolerance has been postulated. Previous studies have reported that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effect of intra-accumbal injections of L-arginine, the NO precursor and L-NAME, the NOS inhibitor on the morphine tolerance in Wistar rats (2...
متن کاملPlace preference induced by nucleus accumbens amphetamine is impaired by antagonists of ERK or p38 MAP kinases in rats.
The nucleus accumbens (NAc) plays a role in conditioned place preference (CPP). The authors tested the hypothesis that inhibition of mitogen-activated protein kinases (MAPKs) would inhibit NAc-amphetamine-produced CPP. Results confirmed that NAc amphetamine increased levels of the MAPK extracellular signal-regulated kinase (ERK). In CPP studies, NAc injections (0.5 microl per side) of the ERK i...
متن کاملAntipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.
Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavioural pharmacology
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2000